Dockerfile Best Practices

OpenRheinRuhr 2015

Jens Erat

November 07th, 2015

Dockerfile Best Practices Jens Erat

Outline

e About
e Dockerfile Best Practices

e Building Images

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

http://creativecommons.org/licenses/by-sa/3.0/

Dockerfile Best Practices: About Jens Erat

About

Dockerfile Best Practices: About Jens Erat

About me

= masters student in Information Engineering at University of Konstanz
= working as e-mail / groupware administrator

= strong believe in free software

= self hosting services since years

= running everything in Docker containers

Dockerfile Best Practices: About Jens Erat

About this talk

This is no introduction to Docker, but gives useful hints for deploying
applications with Docker.
Goals

We want Docker images providing

= isolation in-between services,
= maintainability for

= developers and
= administrators,

= small size

Dockerfile Best Practices: About Jens Erat

Docker

App 1 App 2
Bins/Libs Bins/Libs Bins/Libs

Docker Engine

Operating System

Infrastructure

Figure 1:Containers on base system®

From: https://www.docker.com/what-docker

https://www.docker.com/what-docker

Dockerfile Best Practices: Dockerfile Best Practices Jens Erat

Dockerfile Best Practices

Dockerfile Best Practices: Dockerfile Best Practices Jens Erat

Sources

= Dockerfile reference
https://docs.docker.com/reference/builder/

= Dockerfile best practices
https:
//docs.docker.com/articles/dockerfile_best-practices/

= Guidelines for Creating Official Repositories
https://docs.docker.com/articles/dockerfile_
best-practices/#examples-for-official-repositories

= Docker newsletter

https://docs.docker.com/reference/builder/
https://docs.docker.com/articles/dockerfile_best-practices/
https://docs.docker.com/articles/dockerfile_best-practices/
https://docs.docker.com/articles/dockerfile_best-practices/#examples-for-official-repositories
https://docs.docker.com/articles/dockerfile_best-practices/#examples-for-official-repositories

Dockerfile Best Practices: Building Images Jens Erat

Building Images

Dockerfile Best Practices: Building Images

Jens Erat

FROM debian:8

Distribution Size
alpine 5,028,556
centos 215,676,104
debian 114,995,306
fedora 241,316,031
opensuse 256,224,454
oraclelinux 198,964,416
ubuntu 188,268,233
ubuntu-debootstrap 87,019,347

Dockerfile Best Practices: Building Images Jens Erat

FROM debian:8

debian

Figure 2:Debian Swirl

= small image

= stable

= commonly used

= minimal set of necessary components
= “Docker-recommended”

= |ots of official PPAs/repositories for Ubuntu!

Dockerfile Best Practices: Building lmages Jens Erat

FROM php, ...

= base images for most important software stacks
= mostly Debian-based
= don't reinvent the wheel

e red is U b u n tu @ The Official Ubuntu base image WORDPRE .

WordPress s a free and
open source blogging tool

and a content management

0 Popular open-source relational database . system
management system mongoDB
My Document-oriented NoSQL

database % 3, CentOS
NGiNX

Offcial CentOS base image
High performance reverse

Nede js is a platform for scalable

proxy server)
Relational database n e server-side and networking

management system applications

Figure 3:Official base images

Dockerfile Best Practices: Building Images Jens Erat

FROM php, ...

= COPY into image:

= sources
= base configuration
= add documentation (required database links, setup, ...)

= Dockerfile directly in your source repository?

= .dockerignore (don’t need git history in containers)

Dockerfile Best Practices: Building Images Jens Erat

RUN

= each RUN statement adds another layer

= image grows

= overhead (container startup/image creation)
= keep number of rRUN statements minimal by grouping them
= clean up after large operations (software installation, ...)

Dockerfile Best Practices: Building lmages Jens Erat

RUN

references
parent
image

Figure 4:layers of docker container

Dockerfile Best Practices: Building Images Jens Erat

RUN apt-get (update | upgrade | install)

Preparing

= base images bring sources.list, but no packages, thus
RUN apt-get update before installing packages

= don't apt-get upgrade, instead docker pull new image

= rely on vendor packages if available

Dockerfile Best Practices: Building Images Jens Erat

RUN apt-get (update | upgrade | install)

Install software

= unattended installation: apt-get install -y foo

. keep things minimal: --no-install-recommends

= no useful admin tools: text editors, ping, rsync, ...
= bloats size & possible attack vector
= keep image minimal
= install in container if really required

Dockerfile Best Practices: Building Images Jens Erat

RUN apt-get (update | upgrade | install)

Fixed versions

Fix “main product” version to be installed, “cache buster”

ENV NGINX_VERSION 1.9.0-1-~jessie
RUN apt-get update && \
apt-get install -y ca-certificates nginx=${NGINX_VERSION}

DEBIAN-—FRONTEND=noni .

Prevents interactive sessions (database configuration, ...). Now included in
base image!

Dockerfile Best Practices: Building Images

Jens Erat

RUN apt-get (update | upgrade | install)

Clean up

Remove package lists (outdated anyway). temporary files

RUN apt-get clean && rm -rf \
/var/lib/apt/lists/* \
/tmp/* \

/var/tmp/*

Dockerfile Best Practices: Building Images Jens Erat

apt-get example: nginx

RUN

RUN

ENV

RUN

apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys
— B573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62

echo "deb http://nginx.org/packages/mainline/debian/

<~ jessie nginx" >> /etc/apt/sources.list

NGINX_VERSION 1.9.0-1~jessie

apt-get update && \

apt-get install -y ca-certificates nginx=${NGINX_VERSION}
— && \

rm -rf /var/lib/apt/lists/*

20

Dockerfile Best Practices: Building Images Jens Erat

apt-get example: prosody

ENV PROSODY_VERSION 0.9.8-1~jessie2
RUN apt-key adv --keyserver pool.sks-keyservers.net --recv-
— keys 107D65A0A148C237FDF00AB47393D7E674D9DBB5 && \
echo deb http://packages.prosody.im/debian jessie main
< >>/etc/apt/sources.list && \
apt-get update && \
apt-get install -y --no-install-recommends \
lua-dbi-mysql \
lua-dbi-postgresql \
lua-dbi-sqlite3 \
lua-event \
lua-sec \
lua-zlib \
prosody=${PROSODY_VERSION} && \
apt-get clean && rm -rf \
/var/lib/apt/lists/* \
/tmp/* \
/var/tmp/*

21

Dockerfile Best Practices: Building Images Jens Erat

Installing from sources, binaries

= verify signatures/hashes
= reference specific versions, not latest.tgz (cache buster!)
= clean up after installing/compiling

= uninstall build chain when finished or use language base image

22

Dockerfile Best Practices: Building Images Jens Erat

Build example: redis
https://github.com/docker-library/redis

Fetch and verify

ENV REDIS_VERSION 3.0.0

ENV REDIS_DOWNLOAD_URL http://download.redis.io/releases/
~— redis-3.0.0.tar.gz

ENV REDIS_DOWNLOAD_SHA1
— ¢c75fd32900187a7c9f9d07c412ea3b3315691c65

RUN buildDeps='gcc libc6-dev make'; \

set -x \

&& apt-get update && apt-get install -y $buildDeps --no-
— install-recommends \

&& rm -rf /var/lib/apt/lists/* \

&& mkdir -p /usr/src/redis \

&& curl -sSL "$REDIS_DOWNLOAD_URL" -o redis.tar.gz \

&& echo "$REDIS_DOWNLOAD_SHA1 *redis.tar.gz" | shalsum -c
— -\

23

https://github.com/docker-library/redis

Dockerfile Best Practices: Building Images Jens Erat

Build example: redis

Build and install

&& tar -xzf redis.tar.gz -C /usr/src/redis --strip-
— components=1 \

&& make -C /usr/src/redis \

&& make -C /usr/src/redis install \

Cleanup

&& rm redis.tar.gz \
&& rm -r /usr/src/redis \
&& apt-get purge -y --auto-remove $buildDeps

24

Dockerfile Best Practices: Building Images Jens Erat

ADD vs COPY

= COPY just copies
= ADD can perform some fetch- and unarchive-magic

= don’t use unless you definitely need it (untar)

= use curl for remote files, ADDed files are in their own layer (cannot be
deleted)

25

Dockerfile Best Practices: Building Images Jens Erat

ENV, VOLUME, EXPOSE

= pull together lines (reduce layers)
= don't:

ENV foo bar
ENV BATZ 42
EXPOSE 80
EXPOSE 443
EXPOSE 8080

= do:

ENV foo=bar batz=42
EXPOSE 80 443 8080

26

Dockerfile Best Practices: Building Images Jens Erat

ENTRYPOINT vs CMD

= ENTRYPOINT is the binary executed
= default /bin/sh -c
= CMD is passed as argument

= default empty
= overridden at container startup, eg.

docker run -ti debian bash

= Docker runs $ENTRYPOINT $CMD at startup

27

Dockerfile Best Practices: Building Images Jens Erat

Startup scripts

= Do you really need one?

28

Dockerfile Best Practices: Building Images Jens Erat

Startup scripts

= Do you really need one?

= write script that starts daemon
= terminate execution, if any command fails

set -euf -o pipefail

= exec into main process (keep PID, receive signals)
= Docker recommends gosu for switching users

28

Dockerfile Best Practices: Building Images

Jens Erat

Startup scripts

= Do you really need one?

= write script that starts daemon
= terminate execution, if any command fails

set -euf -o pipefail

= exec into main process (keep PID, receive signals)
= Docker recommends gosu for switching users

= Really need multiple processes? Use supervisord.
= Consider again if you really need it. Twice.
= Watch for dumping logfiles to container stdout!

28

Dockerfile Best Practices: Building Images

Jens Erat

Startup scripts

= Do you really need one?

= write script that starts daemon
= terminate execution, if any command fails

set -euf -o pipefail

= exec into main process (keep PID, receive signals)
= Docker recommends gosu for switching users

= Really need multiple processes? Use supervisord.
= Consider again if you really need it. Twice.
= Watch for dumping logfiles to container stdout!

= Don't apply too much magic. KISS!

28

Dockerfile Best Practices: Building Images

Jens Erat

Persisting data

= VOLUMES are mounted overlay directories

= empty at container creation (no defaults!)

= can be overridden by --volume and --volumes-from
= don't install database systems in container

= all relevant DBMS available as images

= link against them

= including memcached et al.

= |ets administrator decide where to put it

29

Dockerfile Best Practices: Building Images Jens Erat

Persisting data

= build images to be ephemeral
= no state in containers
= no data in containers

= throw away container, create new one
= add documentation what to persist!

30

Dockerfile Best Practices: Building Images Jens Erat

Logs

= no syslogd, no logrotate inside containers
= Docker expectations: log to stdout/stderr

= Docker daemon takes care of output
= have a look at debug-flags
= single process, no need for several log files per container

= Docker 1.6+ can log to host syslogd

31

Dockerfile Best Practices: Building Images

Jens Erat

Logs
What if application strictly writes to a file? 2

= tail -F monitors for file to be created
= tail --pid makes tail terminate if process is terminated

#! /usr/bin/env bash
set -euf -o pipefail

rm -rf /var/log/my-application.log
tail --pid $$ -F /var/log/my-application.log &

exec /path/to/my-application

2As proposed in http://serverfault.com/a/599209/98727

32

http://serverfault.com/a/599209/98727

Dockerfile Best Practices: Building Images Jens Erat

System users

= don’t run daemons as root?

= fixed user ID (reduces permission issues)

adduser --system --home /srv --disabled-password --
— disabled-login --uid 1984 basex

= set user in Dockerfile using USER basex

= consider unSUIDing binaries to reduce possible attack vector

RUN for i in “find / -perm +6000 -type f°; do chmod a-s
<~ $i; domne

3unless you can argue why / would do so on the host system

33

Dockerfile Best Practices: Building Images Jens Erat

Documentation

= Don't just dump a Dockerfile!
= describe what's. . .

1. inside the image

2. needed for setup, especially

= database container links

= what folders to persist

= what's listening on which port

= configuration hickups (logfiles, non-daemonized execution, . ..)
= reverse proxy configuration hints

= cronjobs (docker exec)

3. required action during upgrades (database maintenance?)
= explain general hickups
= for public images/Dockerfiles: license of product and Dockerfile
= YAML file for docker-compose

34

Dockerfile Best Practices: Building Images Jens Erat

Debugging help

= don't clean up during development (makes installing vin easier)

= docker exec -ti [container] /bin/bash

= start with individual run lines, merge later (keep expensive
download-operations in cache)

= Check permissions. Again.

= Ubuntu-based systems: stuck in app-armor?

= check host syslog for denied operations inside containers (missing
privileges?)

= UDP ports must be exposed separately

= trailing / after directories

35

Dockerfile Best Practices: Building Images Jens Erat

Docker registry

If you want to share Docker images,

= let Docker build (“Trusted Builds”), do not upload images

= add hook to base image (for automated rebuild)

= link to GitHub repository

= directly use official base images instead of intermediate ones

36

	About
	Dockerfile Best Practices
	Building Images

