HDCP2

von den Schwierigkeiten,
ein Security-Protokoll zu entwerfen

OpenRheinRuhr
9. November 2013

Martin Kaiser

What?

» designing a security protocol is difficult
» “protocols live forever”

* open-source software Is very useful for
analyzing closed systems

Overview

- HDCP2

* Building blocks

* Authentication

* AKE protocol

* Problems with the AKE protocol
« Palring, pairing data

* Breaking the AKE protocol

« Doing this on real devices

* Recap: What did we achieve?

* Summary

————————-——-—————-——-J .

About me

writing embedded software for Digital TVs
iInvolved In creating the Cl+ Pay-TV standard
Wireshark Core Developer
http://www.kaiser.cx

HDCP2

» High-bandwidth Digital Content Protection,
version 2

* secure transmission of premium
Audio-Video content

- one part of a DRM system
« HDCP2 !'= HDCP

HDCP2 examples

» streaming of TV content
to a smartphone

3T .al m19:28

UE40D7000 O™

- remote control app
 Miracast

— mirror the
smartphone screen
onthe TV

e :
% Miracast

Basic concepts

Upstream Content Control Function

3 HDCP System B B :

<’ - ~
& L3
¥ HDCP Transmitter ‘I‘

] 1
1 [

! ,
HDCP Receiver *l HDCP Receiver ’l % HDCP Receiver
—

..----—‘

HDCP Repeater / (HDCP Receiver)

.

HDCP Receiver HDCP Recelver

..

typical scenario: one transmitter, one receiver

Building blocks

* authentication
* renewability (revocation)
* transmission of payload data

HDCP2 authentication

* AKE (Authentication and Key Exchange)
- result: master key k

* locality check
» session key exchange
- result: session key k_

AKE protocol

* transmitter verifies the receiver's identity
(.e. the receliver's certificate)

- transmitter creates the master key k

- transmitter encrypts k_ (using RSA) and
sends It to the recelver

- check that both parties have the same k

m

« make sure that km can be reused

AKE protocol in detail

HIDCP Transmitter [Device A]

Generate ny

.

=3

Verify sighature on the

certificate using kpu

Generate Ky, Encrypt &y
with &ppkr,,

Verify integrity of SRM
Perform revocation check

Compute H and verify H== H"

Store m, &, and £k, along
with Receiver (12

§

S 00T

b

U

Initiate
authentication: AKE _Init

Send Transmitter Info;
AKE Transitter Info

Send REPEATER, cert,, -
AKE_Send_ Cert]

Send Receiver Info:
AKE Receiver Infi

Transmit encrypted &,

HDCP Receiver [Device B)

Generate r,
Send r. AKE_Send_rry

¢ =

§ 5

R= Send H | Decrypt &, with kpriv,,

4{7 AKE Send H prime] Compute f/” = HMAC-SHAZ56(r,, XOR
REPEATER, ky)

LEI“‘I:-ﬁr AKE Send Pairing_Info Compute Fyfk,y)

Figure 2.1. Authentication and Key Exchange (Without Stored k,,)

What's wrong with AKE?

* Nothing, but ...

- transmitter I1s not authenticated
- messages are not signed

- recelver sends a random number -
but It's not used In subsequent
calculations

Pairing
» RSA calculation is time-consuming

* reuse the master key between the same two
devices

- both devices must store the master key
— assumption: receiver can't do this

* the transmitter stores the receiver's copy of the
master key

- receiver encrypts the master key with an
Internal secret key

- transmitter stores the encrypted version

Pairing data

receiver encrypts the
master key k_for storing

by the transmitter

Send Epik,):

AKE Send Pairing_Info Compute Eisfk,)

Store m, &, and Eyk,) along
with Receiver D

transmitter stores pairing data

- encrypted k_(from the pairing message)
- Cleark

 Initial value m (transmitter's random number)

* receiver ID
1-_.

Receiver generates the pairing data

: initial value
* receiver encrypts the m
master key for storage receiver's 2
: : secret key
* encryption and decryption .
are the same operation | B
- doing this twice 8y input:
gives you back the 0 master key
data in the clear 4
- don't ever reuse the Em};mdkf
Initial value m .
output:
A2 B encrypted master
but this Is based only on (e orstorane

data from the transmitter ;-)

————————-——-—————-——-J .

Attacking the AKE protocol (I)

» capture an HDCP2 session including the AKE

— capture the initial value m
- capture encrypted k

- capture the verification value H'

Attacking the AKE protocol (11)

* run the AKE protocol as a transmitter
* receiver performs the calculation of pairing data

- trick 1t Into using forged values

- the same Initial value m as in the captured
session

- encrypted Kk _instead of clear k _

* the receiver does not create paring data, it
decrypts the pairing data from the captured
session

- this recovers the clear master key k

— T — — - —

Setup

» Samsung TV, Galaxy S2 phone

- TV Is streaming to the phone's remote control
application (dual view)

- TV Is the transmitter, phone is the receiver

« HDCP2 does not specify how transmitter and
receiver find each other

- Samsung uses DLNA

- we don't implement this, we just add our fake
transmitter to the network and start sending...

Test network

P
192.168.1.254

TV phone
192.168.1.5 192.168.1.2

Capture the AKE protocol

- HDCP2 AKE messages are simple

- always In the clear
- no context required for parsing them
* Wireshark HDCP2 dissector

- ontop of TCP

- heuristic dissector, no well-known TCP port
- avallable in Wireshark >= 1.8

Fake AKE protocol

HDCP Transmitter [Device A)

replay captured r_tx Generate r,

.

ignore i
Verify sighature on the 3
certificate using kpuby, 7

LA

use captured E_kh_km as Km__¥_|
encrypt it with kpub_rx
Generate k. Encrypt &,

with ppich,, T
ignere
Verify integrity of SEM : =
Perform revocation check g =
g =
ignore
Compute H and verify H== "
o=
BS
35
w
Store m, k, and Eyk,) along Y

with Receiver 1D

Initiate
authentication: AKE_ Init

Send Transmitter Info:
AKE Transitter Info

Send REPEATER. cert:
AKE_Send_Cert}

Send Recerver Info:
AKE Receiver Infi

Transmit encryvpted &,

KE No Stored km

Send r AKE Send rrd

Send /1

Send Eyik,):
AKE Send Pairing Info

HDCP Receiver [Device B]

Generate r,,

Decrypt k,, with kpriv,,

AKE Send H prime] Compute /™= HMAC-SHAZ56(r,, XOR

REPEATER, kg

Compute Ff k)
receiver actually computes
E_khi{E_kh(k_m)i=k_m

Figure 2.1. Authentication and Key Exchange (Without Stored k)

‘-————————-——l——l—n—l————-———l—l————_—-—J-

RSA encryption

* normally, the transmitter creates the master
key k_and encrypts it using RSA

- we encrypt the AES-encrypted k_ from the
pairing data
» RSA encryption

- RSASSA OAEP with SHA256, MGF1 with
SHA256

- not supported by OpenSSL at the time | tried
this first

- libgcrypt can do this

Run the fake AKE protocol

* phone will only listen on the HDCP2 TCP port after
successful DLNA discovery

- we let the phone and TV do the DLNA part

- phone does not restrict TCP connections to
the TV's address ;-)

- transmitter may Initiate the AKE protocol at any
time

» all messages can be pre-computed

- none of our fake transmitter messages depends
on a previous (variable) answer from the receiver

* use Wireshark to parse the receiver's answers

We have the master key! Really?

Send H:
AKE Send H prime] Compute 7" =HMAC-SHA256(r, XOR
_ REPEATER, ky)
Compute H and verify H==H"

* receiver calculates a verification value H' and sends it to the
transmitter

- H' depends on the master key k _
- we captured the H' of the original AKE protocol run
* transmitter calculates the same value and compares them

- can we calculate H==H' for the original AKE run?
* this needs HMAC-SHA256 and AES-CTR

- all supported by OpenSSL
e e e e

Recap

we can get the master key of a captured HDCP2
authentication

- we just need to speak to the receiver for a
moment

- the master key will be the same for all past and
future sessions between the two devices

this is a protocol weakness, it does not require a
buggy implementation in one of the devices

it's not enough for decrypting the AV content

- license constant Ic___ Is missing

Fixing this

« HDCP 2.2
» change the formula for the initial value
-m=r [|r
- the inital value depends on random numbers
of both transmitter and receiver

- a fake transmitter cannot force the same
Initial value m

» an HDCP 2.2 device does not do pairing with an
HDCP 2.1 device

Summary

Protocols are complicated

- If possible, don't define your own protocol

understand the limitations of cryptographic
primitives you're using

even for the closest of systems, open-source
software helps to analyze and understand them

adding your protocol to Wireshark is easy
- see my next talk ;-)

Thank you for your attention.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

