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What?

» designing a security protocol is difficult
» “protocols live forever”

* open-source software Is very useful for
analyzing closed systems




Overview

- HDCP2

* Building blocks

* Authentication

* AKE protocol

* Problems with the AKE protocol
« Palring, pairing data

* Breaking the AKE protocol

« Doing this on real devices

* Recap: What did we achieve?

* Summary
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About me

writing embedded software for Digital TVs
iInvolved In creating the Cl+ Pay-TV standard
Wireshark Core Developer
http://www.kaiser.cx




HDCP2

» High-bandwidth Digital Content Protection,
version 2

* secure transmission of premium
Audio-Video content

- one part of a DRM system
« HDCP2 !'= HDCP




HDCP2 examples

» streaming of TV content
to a smartphone
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- remote control app
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smartphone screen
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Basic concepts
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Building blocks

* authentication
* renewability (revocation)
* transmission of payload data




HDCP2 authentication

* AKE (Authentication and Key Exchange)
- result: master key k

* locality check
» session key exchange
- result: session key k_




AKE protocol

* transmitter verifies the receiver's identity
(.e. the receliver's certificate)

- transmitter creates the master key k

- transmitter encrypts k_ (using RSA) and
sends It to the recelver

- check that both parties have the same k

m

« make sure that km can be reused




AKE protocol in detail
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Figure 2.1. Authentication and Key Exchange (Without Stored k,,)




What's wrong with AKE?

* Nothing, but ...

- transmitter I1s not authenticated
- messages are not signed

- recelver sends a random number -
but It's not used In subsequent
calculations




Pairing
» RSA calculation is time-consuming

* reuse the master key between the same two
devices

- both devices must store the master key
— assumption: receiver can't do this

* the transmitter stores the receiver's copy of the
master key

- receiver encrypts the master key with an
Internal secret key

- transmitter stores the encrypted version




Pairing data

receiver encrypts the
master key k_for storing

by the transmitter

Send Epik,):

AKE Send Pairing_Info Compute Eisfk,)

Store m, &, and Eyk,) along
with Receiver D

transmitter stores pairing data

- encrypted k_(from the pairing message)
- Cleark

 Initial value m (transmitter's random number)

* receiver ID
1-_.




Receiver generates the pairing data

: initial value
* receiver encrypts the m
master key for storage receiver's 2
: : secret key
* encryption and decryption .
are the same operation | B
- doing this twice 8y input:
gives you back the 0 master key
data in the clear 4
- don't ever reuse the Em};mdkf
Initial value m .
output:
A2 B encrypted master
but this Is based only on (e orstorane

data from the transmitter ;-)
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Attacking the AKE protocol (I)

» capture an HDCP2 session including the AKE

— capture the initial value m
- capture encrypted k

- capture the verification value H'




Attacking the AKE protocol (11)

* run the AKE protocol as a transmitter
* receiver performs the calculation of pairing data

- trick 1t Into using forged values

- the same Initial value m as in the captured
session

- encrypted Kk _instead of clear k _

* the receiver does not create paring data, it
decrypts the pairing data from the captured
session

- this recovers the clear master key k

— T — — - —



Setup

» Samsung TV, Galaxy S2 phone

- TV Is streaming to the phone's remote control
application (dual view)

- TV Is the transmitter, phone is the receiver

« HDCP2 does not specify how transmitter and
receiver find each other

- Samsung uses DLNA

- we don't implement this, we just add our fake
transmitter to the network and start sending...




Test network

P
192.168.1.254

TV phone
192.168.1.5 192.168.1.2




Capture the AKE protocol

- HDCP2 AKE messages are simple

- always In the clear
- no context required for parsing them
* Wireshark HDCP2 dissector

- ontop of TCP

- heuristic dissector, no well-known TCP port
- avallable in Wireshark >= 1.8




Fake AKE protocol
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Figure 2.1. Authentication and Key Exchange (Without Stored k)
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RSA encryption

* normally, the transmitter creates the master
key k_and encrypts it using RSA

- we encrypt the AES-encrypted k_ from the
pairing data
» RSA encryption

- RSASSA OAEP with SHA256, MGF1 with
SHA256

- not supported by OpenSSL at the time | tried
this first

- libgcrypt can do this




Run the fake AKE protocol

* phone will only listen on the HDCP2 TCP port after
successful DLNA discovery

- we let the phone and TV do the DLNA part

- phone does not restrict TCP connections to
the TV's address ;-)

- transmitter may Initiate the AKE protocol at any
time

» all messages can be pre-computed

- none of our fake transmitter messages depends
on a previous (variable) answer from the receiver

* use Wireshark to parse the receiver's answers




We have the master key! Really?

Send H:
AKE Send H prime] Compute 7" =HMAC-SHA256(r, XOR
_ REPEATER, ky)
Compute H and verify H==H"

* receiver calculates a verification value H' and sends it to the
transmitter

- H' depends on the master key k _
- we captured the H' of the original AKE protocol run
* transmitter calculates the same value and compares them

- can we calculate H==H' for the original AKE run?
* this needs HMAC-SHA256 and AES-CTR

- all supported by OpenSSL
e e e e




Recap

we can get the master key of a captured HDCP2
authentication

- we just need to speak to the receiver for a
moment

- the master key will be the same for all past and
future sessions between the two devices

this is a protocol weakness, it does not require a
buggy implementation in one of the devices

it's not enough for decrypting the AV content

- license constant Ic___ Is missing




Fixing this

« HDCP 2.2
» change the formula for the initial value
-m=r [|r
- the inital value depends on random numbers
of both transmitter and receiver

- a fake transmitter cannot force the same
Initial value m

» an HDCP 2.2 device does not do pairing with an
HDCP 2.1 device




Summary

Protocols are complicated

- If possible, don't define your own protocol

understand the limitations of cryptographic
primitives you're using

even for the closest of systems, open-source
software helps to analyze and understand them

adding your protocol to Wireshark is easy
- see my next talk ;-)




Thank you for your attention.

Questions?
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